
2 CHAPTER 1 The Art of Problem Solving

Solving Problems by Inductive Reasoning
The development of mathematics can be traced to the Egyptian and Babylonian cul-
tures (3000 B.C.–A.D. 260) as a necessity for problem solving. Their approach was
an example of the “do thus and so” method: in order to solve a problem or perform
an operation, a cookbook-like recipe was given, and it was performed over and over
to solve similar problems. The classical Greek period (600 B.C.–A.D. 450) gave rise
to a more formal type of mathematics, in which general concepts were applied to
specific problems, resulting in a structured, logical development of mathematics.

By observing that a specific method worked for a certain type of problem, the
Babylonians and the Egyptians concluded that the same method would work for any
similar type of problem. Such a conclusion is called a conjecture. A conjecture is an
educated guess based upon repeated observations of a particular process or pattern.
The method of reasoning we have just described is called inductive reasoning.

1.1

Inductive Reasoning
Inductive reasoning is characterized by drawing a general conclusion
(making a conjecture) from repeated observations of specific examples.
The conjecture may or may not be true.

Deductive Reasoning
Deductive reasoning is characterized by applying general principles to
specific examples.

The Moscow papyrus, which
dates back to about 1850 B.C.,
provides an example of inductive
reasoning by the early Egyptian
mathematicians. Problem 14 in
the document reads:

You are given a truncated
pyramid of 6 for the vertical
height by 4 on the base by 2 on
the top. You are to square this
4, result 16. You are to double
4, result 8. You are to square 2,
result 4. You are to add the 16,
the 8, and the 4, result 28. You
are to take one-third of 6, result
2. You are to take 28 twice,
result 56. See, it is 56. You will
find it right.

What does all this mean? A
frustum of a pyramid is that part
of the pyramid remaining after its
top has been cut off by a plane
parallel to the base of the
pyramid. The actual formula for
finding the volume of the frustum
of a pyramid with a square base is

where b is the area of the upper
base, B is the area of the lower
base, and h is the height (or
altitude). The writer of the problem
is giving a method of determining
the volume of the frustum of a
pyramid with square bases on the
top and bottom, with bottom base
side of length 4, top base side of
length 2, and height equal to 6.

A truncated pyramid, or
frustum of a pyramid

V �
1
3

h �b 2 � bB � B 2�,

In testing a conjecture obtained by inductive reasoning, it takes only one 
example that does not work in order to prove the conjecture false. Such an example
is called a counterexample. Inductive reasoning provides a powerful method of
drawing conclusions, but it is also important to realize that there is no assurance that
the observed conjecture will always be true. For this reason, mathematicians are re-
luctant to accept a conjecture as an absolute truth until it is formally proved using
methods of deductive reasoning. Deductive reasoning characterized the development
and approach of Greek mathematics, as seen in the works of Euclid, Pythagoras,
Archimedes, and others.

Let us now look at examples of these two types of reasoning. In this chapter we
will often refer to the natural or counting numbers:

The three dots indicate that the numbers continue indefinitely in the pattern that has
been established. The most probable rule for continuing this pattern is “add 1 to the
previous number,” and this is indeed the rule that we follow. Now consider the fol-
lowing list of natural numbers:

2, 9, 16, 23, 30.

1, 2, 3, . . . .
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What is the next number of this list? Most people would say that the next number is
37. Why? They probably reason something like this: What have 2 and 9 and 16 in
common? What is the pattern?

After studying the numbers, we might see that , and . Is
something similar true for the other numbers in this list? Do you add 16 and 7 to 
get 23? Do you add 23 and 7 to get 30? Yes; any number in the given list can be
found by adding 7 to the preceding number, so the next number in the list should 
be .

You set out to find the “next number” by reasoning from your observation 
of the numbers in the list. You may have jumped from these observations 
above to the general statement that any num-
ber in the list is 7 more than the preceding number. This is an example of induc-
tive reasoning.

By using inductive reasoning, we concluded that 37 was the next number in the
list. But this is wrong. You were set up. You’ve been tricked into drawing an incor-
rect conclusion. Not that your logic was faulty; but the person making up the list has
another answer in mind. The list of numbers

actually gives the dates of Mondays in June if June 1 falls on a Sunday. The next
Monday after June 30 is July 7. With this pattern, the list continues as

See the calendar in Figure 1.
The process you may have used to obtain the rule “add 7” in the list above re-

veals one main flaw of inductive reasoning. You can never be sure that what is true
in a specific case will be true in general. Even a larger number of cases may not be
enough. Inductive reasoning does not guarantee a true result, but it does provide a
means of making a conjecture.

With deductive reasoning, we use general statements and apply them to spe-
cific situations. For example, one of the best-known rules in mathematics is the
Pythagorean Theorem: In any right triangle, the sum of the squares of the legs
(shorter sides) is equal to the square of the hypotenuse (longest side). Thus, if we
know that the lengths of the shorter sides are 3 inches and 4 inches, we can find the
length of the longest side. Let h represent the longest side:

Pythagorean Theorem

Square the terms.

Add.

The positive square root of 25 is 5.

Thus, the longest side measures 5 inches. We used the general rule (the
Pythagorean Theorem) and applied it to the specific situation.

Reasoning through a problem usually requires certain premises. A premise can
be an assumption, law, rule, widely held idea, or observation. Then reason induc-
tively or deductively from the premises to obtain a conclusion. The premises and
conclusion make up a logical argument.

 h � 5.

 25 � h2

 9 � 16 � h2

 32 � 42 � h2

2, 9, 16, 23, 30, 7, 14, 21, 28, . . . .

2, 9, 16, 23, 30

�2 � 7 � 9, 9 � 7 � 16, and so on)

30 � 7 � 37

9 � 7 � 162 � 7 � 9

FIGURE 1
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E X A M P L E 1 Identify each premise and the conclusion in each of the fol-
lowing arguments. Then tell whether each argument is an example of inductive or
deductive reasoning.

(a) Our house is made of redwood. Both of my next-door neighbors have red-
wood houses. Therefore, all houses in our neighborhood are made of redwood.

The premises are “Our house is made of redwood” and “Both of my next-door
neighbors have redwood houses.” The conclusion is “Therefore, all houses in
our neighborhood are made of redwood.” Since the reasoning goes from specific 
examples to a general statement, the argument is an example of inductive rea-
soning (although it may very well have a false conclusion).

(b) All word processors will type the symbol @. I have a word processor. I can type
the symbol @.

Here the premises are “All word processors will type the symbol @” and “I have
a word processor.” The conclusion is “I can type the symbol @.” This reasoning
goes from general to specific, so deductive reasoning was used.

(c) Today is Friday. Tomorrow will be Saturday.

There is only one premise here, “Today is Friday.” The conclusion is “Tomor-
row will be Saturday.” The fact that Saturday follows Friday is being used, even
though this fact is not explicitly stated. Since the conclusion comes from gen-
eral facts that apply to this special case, deductive reasoning was used. �

The example involving dates earlier in this section illustrated how inductive 
reasoning may, at times, lead to false conclusions. However, in many cases in-
ductive reasoning does provide correct results, if we look for the most probable
answer.

E X A M P L E 2 Use inductive reasoning to determine the probable next num-
ber in each list below.

(a)

Each number in the list is obtained by adding 4 to the previous number. The
probable next number is .

(b)

Beginning with the third number in the list, each number is obtained by adding
the two previous numbers in the list. That is, , , 
and so on. The probable next number in the list is . (These are the
first few terms of the famous Fibonacci sequence, covered in detail in a later
chapter.)

(c)

It appears here that in order to obtain each number after the first, we must
double the previous number. Therefore, the most probable next number is

. �

Inductive reasoning often can be used to predict an answer in a list of similarly
constructed computation exercises, as shown in the next example.

16 � 2 � 32

1, 2, 4, 8, 16

13 � 21 � 34
2 � 3 � 5,1 � 2 � 31 � 1 � 2

1, 1, 2, 3, 5, 8, 13, 21

23 � 4 � 27

3, 7, 11, 15, 19, 23

mmi_bounce01.html?1_0
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E X A M P L E 3 Consider the list of equations in the margin. Use the list to
predict the next multiplication fact in the list.

In each case, the left side of the equation has two factors, the first 37 and the
second a multiple of 3, beginning with 3. The product (answer) in each case consists
of three digits, all the same, beginning with 111 for . For this pattern to con-
tinue, the next multiplication fact would be , which is indeed true.
(Note: You might wish to investigate what happens after 30 is reached for the right-
hand factor, and make conjectures based on those products.) �

37 � 15 � 555
37 � 3

37 � 3 � 111

37 � 6 � 222

37 � 9 � 333

37 � 12 � 444

The following anecdote concerning inductive
reasoning appears in the first volume of the 
In Mathematical Circles series by Howard Eves
(PWS-KENT Publishing Company).

A scientist had two large jars before him on
the laboratory table. The jar on his left
contained a hundred fleas; the jar on his
right was empty. The scientist carefully lifted
a flea from the jar on the left, placed the flea
on the table between the two jars, stepped
back, and in a loud voice said, “Jump.” The
flea jumped and was put in the jar on the
right. A second flea was carefully lifted from
the jar on the left and placed on the table
between the two jars. Again the scientist
stepped back and in a loud voice said,
“Jump.” The flea jumped and was put in the
jar on the right. In the same manner, the

scientist treated each of the hundred fleas in
the jar on the left, and each flea jumped as
ordered. The two jars were then interchanged
and the experiment continued with a slight
difference. This time the scientist carefully
lifted a flea from the jar on the left, yanked
off its hind legs, placed the flea on the table
between the jars, stepped back, and in a
loud voice said, “Jump.” The flea did not
jump, and was put in the jar on the right. A
second flea was carefully lifted from the jar
on the left, its hind legs yanked off, and then
placed on the table between the two jars.
Again the scientist stepped back and in a
loud voice said, “Jump.” The flea did not
jump, and was put in the jar on the right. In
this manner, the scientist treated each of the
hundred fleas in the jar on the left, and in no
case did a flea jump when ordered. So the
scientist recorded in his notebook the
following induction: “A flea, if its hind legs
are yanked off, cannot hear.”

For Group Discussion

As a class, discuss examples from advertising
on television, in newspapers, magazines, etc.,
that lead consumers to draw incorrect
conclusions.

F O R  F U R T H E R T H O U G H T

A classic example of the pitfalls in inductive reasoning involves the maxi-
mum number of regions formed when chords are constructed in a circle. When two
points on a circle are joined with a line segment, a chord is formed. Locate a single
point on a circle. Since no chords are formed, a single interior region is formed. 

mmi_bounce01.html?1_1
mmi_bounce01.html?1_6
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See Figure 2(a). Locate two points and draw a chord. Two interior regions are formed,
as shown in Figure 2(b). Continue this pattern. Locate three points, and draw all pos-
sible chords. Four interior regions are formed, as shown in Figure 2(c). Four points
yield 8 regions and five points yield 16 regions. See Figures 2(d) and 2(e).

FIGURE 3
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The results of the preceding observations are summarized in the chart in the
margin. The pattern formed in the column headed “Number of Regions” is the same
one we saw in Example 2(c), where we predicted that the next number would be 32.
It seems here that for each additional point on the circle, the number of regions dou-
bles. A reasonable inductive conjecture would be that for six points, 32 regions
would be formed. But as Figure 3 indicates, there are only 31 regions!

No, a region was not “missed.” It happens that the pattern of doubling ends
when the sixth point is considered. Adding a seventh point would yield 57 regions.
The numbers obtained here are

For n points on the circle, the number of regions is given by the formula

We can use a graphing calculator to construct a table of values that indicates the
number of regions for various numbers of points. Using X rather than n, we can de-
fine using the expression above (see Figure 4(a)). Then, creating a table of val-
ues, as in Figure 4(b), we see how many regions (indicated by ) there are for any
number of points (X).

(a) (b)

FIGURE 4

*For more information on this and other similar patterns, see “Counting Pizza Pieces and Other Com-
binatorial Problems,” by Eugene Maier, in the January 1988 issue of Mathematics Teacher, pp. 22–26.

Y1

Y1

n4 � 6n3 � 23n2 � 18n � 24

24
.
*

1, 2, 4, 8, 16, 31, 57.

Number Number
of Points of Regions

1 1
2 2
3 4
4 8
5 16
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As indicated earlier, not until a general relationship is proved can one be sure
about a conjecture since one counterexample is always sufficient to make the con-
jecture false.

5, 10, 15, 20, . . . ,

27 � 12
�9 � 18� � 12 �9 � 18 � 27

Determine the most probable next term in each list of numbers.

15. 6, 9, 12, 15, 18 16. 13, 18, 23, 28, 33 17. 3, 12, 48, 192, 768

18. 32, 16, 8, 4, 2 19. 3, 6, 9, 15, 24, 39 20. 1�3, 3�5, 5�7, 7�9, 9�11

21. 1�2, 3�4, 5�6, 7�8, 9�10 22. 1, 4, 9, 16, 25 23. 1, 8, 27, 64, 125

24. 2, 6, 12, 20, 30, 42 25. 4, 7, 12, 19, 28, 39 26. , 2, , 4, , 6

27. 5, 3, 5, 5, 3, 5, 5, 5, 3, 5, 5, 5, 5, 3, 5, 5, 5, 5 28. 8, 2, 8, 2, 2, 8, 2, 2, 2, 8, 2, 2, 2, 2, 8, 2, 2, 2, 2

�5�3�1

29. Construct a list of numbers similar to those in Exer-
cise 15 such that the most probable next number in
the list is 60.

30. Construct a list of numbers similar to those in Exer-
cise 26 such that the most probable next number in
the list is 9.
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